A Dual-Function “TRE-Lox” System for Genetic Deletion or Reversible, Titratable, and Near-Complete Downregulation of Cathepsin D

Author:

Terron Heather M.1,Maranan Derek S.12,Burgard Luke A.12,LaFerla Frank M.12,Lane Shelley1,Leissring Malcolm A.1ORCID

Affiliation:

1. Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA

2. Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA

Abstract

Commonly employed methods for reversibly disrupting gene expression, such as those based on RNAi or CRISPRi, are rarely capable of achieving >80–90% downregulation, making them unsuitable for targeting genes that require more complete disruption to elicit a phenotype. Genetic deletion, on the other hand, while enabling complete disruption of target genes, often produces undesirable irreversible consequences such as cytotoxicity or cell death. Here we describe the design, development, and detailed characterization of a dual-function “TRE-Lox” system for effecting either (a) doxycycline (Dox)-mediated downregulation or (b) genetic deletion of a target gene—the lysosomal aspartyl protease cathepsin D (CatD)—based on targeted insertion of a tetracycline-response element (TRE) and two LoxP sites into the 5′ end of the endogenous CatD gene (CTSD). Using an optimized reverse-tetracycline transrepressor (rtTR) variant fused with the Krüppel-associated box (KRAB) domain, we show that CatD expression can be disrupted by as much as 98% in mouse embryonic fibroblasts (MEFs). This system is highly sensitive to Dox (IC50 = 1.46 ng/mL) and results in rapid (t1/2 = 0.57 d) and titratable downregulation of CatD. Notably, even near-total disruption of CatD expression was completely reversed by withdrawal of Dox. As expected, transient expression of Cre recombinase results in complete deletion of the CTSD gene. The dual functionality of this novel system will facilitate future studies of the involvement of CatD in various diseases, particularly those attributable to partial loss of CatD function. In addition, the TRE-Lox approach should be applicable to the regulation of other target genes requiring more complete disruption than can be achieved by traditional methods.

Funder

U.S. National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

1. Tissue- and site-specific DNA recombination in transgenic mice;Orban;Proc. Natl. Acad. Sci. USA,1992

2. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae;Sauer;Mol. Cell. Biol.,1987

3. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters;Gossen;Proc. Natl. Acad. Sci. USA,1992

4. Transcriptional activation by tetracyclines in mammalian cells;Gossen;Science,1995

5. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans;Fire;Nature,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3