The Fraser Complex Proteins (Frem1, Frem2, and Fras1) Can Form Anchoring Cords in the Absence of AMACO at the Dermal–Epidermal Junction of Mouse Skin

Author:

Esho Temitope1,Kobbe Birgit1,Tufa Sara2ORCID,Keene Douglas2,Paulsson Mats134,Wagener Raimund1

Affiliation:

1. Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany

2. Micro-Imaging Center, Shriners Children’s, Portland, OR 97239, USA

3. Center for Molecular Medicine Cologne, 50931 Cologne, Germany

4. Cologne Center for Musculoskeletal Biomechanics, 50931 Cologne, Germany

Abstract

AMACO (VWA2 protein), secreted by epithelial cells, is strongly expressed at basement membranes when budding or invagination occurs in embryos. In skin, AMACO associates with proteins of the Fraser complex, which form anchoring cords. These, during development, temporally stabilize the dermal–epidermal junction, pending the formation of collagen VII-containing anchoring fibrils. Fraser syndrome in humans results if any of the core members of the Fraser complex (Fras1, Frem1, Frem2) are mutated. Fraser syndrome is characterized by subepidermal blistering, cryptophthalmos, and syndactyly. In an attempt to determine AMACO function, we generated and characterized AMACO-deficient mice. In contrast to Fraser complex mutant mice, AMACO-deficient animals lack an obvious phenotype. The mutually interdependent basement membrane deposition of the Fraser complex proteins, and the formation of anchoring cords, are not affected. Furthermore, hair follicle development in newborn AMACO-deficient mice showed no gross aberration. Surprisingly, it appears that, while AMACO is a component of the anchoring cords, it is not essential for their formation or function.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3