Ecosystem Service Benefits and Trade-Offs—Selecting Tree Species in Denmark for Bioenergy Production

Author:

Sántha Eszter,Bentsen Niclas Scott

Abstract

Research highlights: The study enabled us to quantitatively assess ecosystem benefits and trade-offs, to characterize species as generalists or specialists, and findings suggest that producing biomass for energy is more likely to serve multiple objectives if it is implemented in an integrated production system. Background and Objectives: Biomass is one of the main and largest sources of renewable energy. In Denmark, the production of biomass for energy is mainly based on timber harvest residues from pre-commercial thinning of forest stands. However, there is an increasing demand for bioenergy that require biomass to be grown specifically for energy purposes even though the sustainability and climate change mitigation potential of bioenergy plantations have recently been questioned in terms of food production, land use, land use change and terrestrial carbon cycles. The overall objective of the research is to better understand the opportunities and trade-offs between different woody and non-woody energy crops. Material and Methods: This study assessed the ecosystem services of seven woody species and one perennial along a management intensity continuum with a main focus on bioenergy production. Results: Results of the analysis showed that there are complex interrelations between ecosystem services and significant differences between species in providing those services. Conclusions: Species with a highest energy benefit among assessed species were poplar and grand fir, while beech and oak proved the best in providing biodiversity benefits.

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

1. Greenhouse Gas Emission Statistics—Emission Inventories,2017

2. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC,2009

3. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

4. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints

5. Renewables 2018 Global Status Report,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3