Assessment of Precipitation Estimation from the NWP Models and Satellite Products for the Spring 2019 Severe Floods in Iran

Author:

Aminyavari ,Saghafian ,Sharifi

Abstract

Precipitation monitoring and early warning systems are required to reduce negative flood impacts. In this study, the performance of ensemble precipitation forecasts of three numerical weather prediction (NWP) models within the THORPEX interactive grand global ensemble (TIGGE) as well as the integrated multi-satellite retrievals for global precipitation measurement (GPM), namely IMERG, for precipitation estimates were evaluated in recent severe floods in Iran over the March–April 2019 period. The evaluations were conducted in three aspects: spatial distribution of precipitation, mean areal precipitation in three major basins hard hit by the floods, and the dichotomous evaluation in four precipitation thresholds (25, 50, 75, and 100 mm per day). The results showed that the United Kingdom Met Office (UKMO) model, in terms of spatial coverage and satellite estimates as well as the precipitation amount, were closer to the observations. Moreover, with regard to mean precipitation at the basin scale, UKMO and European Center for Medium-Range Weather Forecasts (ECMWF) models in the Gorganrud Basin, ECMWF in the Karkheh Basin and UKMO in the Karun Basin performed better than others in flood forecasting. The National Centers for Environmental Forecast (NCEP) model performed well at low precipitation thresholds, while at high thresholds, its performance decreased significantly. On the contrary, the accuracy of IMERG improved when the precipitation threshold increased. The UKMO had better forecasts than the other models at the 100 mm/day precipitation threshold, whereas the ECMWF had acceptable forecasts in all thresholds and was able to forecast precipitation events with a lower false alarm ratio and better detection when compared to other models.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3