Text Mining in Remotely Sensed Phenology Studies: A Review on Research Development, Main Topics, and Emerging Issues

Author:

Bajocco ,Raparelli ,Teofili ,Bascietto ,Ricotta

Abstract

As an interdisciplinary field of research, phenology is developing rapidly, and the contents of phenological research have become increasingly abundant. In addition, the potentiality of remote sensing technologies has largely contributed to the growth and complexity of this discipline, in terms of the scale of analysis, techniques of data processing, and a variety of topics. As a consequence, it is increasingly difficult for scientists to get a clear picture of remotely sensed phenology (rs+pheno) research. Bibliometric analysis is increasingly used for the study of a discipline and its conceptual dynamics. This review analyzed the last 40 years (1979–2018) of publications in the rs+pheno field retrieved from the Scopus database; such publications were investigated by means of a text mining approach, both in terms of bibliographic and text data. Results demonstrated that rs+pheno research is exponentially growing through time; however, it is primarily considered a subset of remote sensing science rather than a branch of phenology. In this framework, in the last decade, agriculture is becoming more and more a standalone science in rs+pheno research, independently from other related topics, e.g., classification. On the contrary, forestry struggles to gain its thematic role in rs+pheno studies and remains strictly connected with climate change issues. Classification and mapping represent the major rs+pheno topic, together with the extraction and the analysis of phenological metrics, like the start of the growing season. To the contrary, forest ecophysiology, in terms of ecosystem respiration and net ecosystem exchange, results as the most relevant new topic, together with the use of the red edge band and SAR (Synthetic Aperture Radar) data in rs+pheno agricultural studies. Some niche emerging rs+pheno topics may be recognized in the ocean and arctic investigations linked to phytoplankton blooming and ice cover dynamics. The findings of this study might be applicable for planning and managing remotely sensed phenology research; scientists involved in such discipline might use this study as a reference to consider their research domain in a broader dynamical network.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3