Structural Building Damage Detection with Deep Learning: Assessment of a State-of-the-Art CNN in Operational Conditions

Author:

Nex FrancescoORCID,Duarte DiogoORCID,Tonolo Fabio GiulioORCID,Kerle NormanORCID

Abstract

Remotely sensed data can provide the basis for timely and efficient building damage maps that are of fundamental importance to support the response activities following disaster events. However, the generation of these maps continues to be mainly based on the manual extraction of relevant information in operational frameworks. Considering the identification of visible structural damages caused by earthquakes and explosions, several recent works have shown that Convolutional Neural Networks (CNN) outperform traditional methods. However, the limited availability of publicly available image datasets depicting structural disaster damages, and the wide variety of sensors and spatial resolution used for these acquisitions (from space, aerial and UAV platforms), have limited the clarity of how these networks can effectively serve First Responder needs and emergency mapping service requirements. In this paper, an advanced CNN for visible structural damage detection is tested to shed some light on what deep learning networks can currently deliver, and its adoption in realistic operational conditions after earthquakes and explosions is critically discussed. The heterogeneous and large datasets collected by the authors covering different locations, spatial resolutions and platforms were used to assess the network performances in terms of transfer learning with specific regard to geographical transferability of the trained network to imagery acquired in different locations. The computational time needed to deliver these maps is also assessed. Results show that quality metrics are influenced by the composition of training samples used in the network. To promote their wider use, three pre-trained networks—optimized for satellite, airborne and UAV image spatial resolutions and viewing angles—are made freely available to the scientific community.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Remote Sensing and Earthquake Damage Assessment: Experiences, Limits, and Perspectives

2. Utilizing New Technologies in Managing Hazards and Disasters;Eguchi,2009

3. INSARAG Guidelines, Volume II: Preparedness and Response, Manual B: Operations,2015

4. Global trends in satellite-based emergency mapping

5. Collaborative damage mapping for emergency response: the role of Cognitive Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3