Improving Real-Time Hand Gesture Recognition with Semantic Segmentation

Author:

Benitez-Garcia GibranORCID,Prudente-Tixteco Lidia,Castro-Madrid Luis Carlos,Toscano-Medina Rocio,Olivares-Mercado Jesus,Sanchez-Perez Gabriel,Villalba Luis Javier GarciaORCID

Abstract

Hand gesture recognition (HGR) takes a central role in human–computer interaction, covering a wide range of applications in the automotive sector, consumer electronics, home automation, and others. In recent years, accurate and efficient deep learning models have been proposed for real-time applications. However, the most accurate approaches tend to employ multiple modalities derived from RGB input frames, such as optical flow. This practice limits real-time performance due to intense extra computational cost. In this paper, we avoid the optical flow computation by proposing a real-time hand gesture recognition method based on RGB frames combined with hand segmentation masks. We employ a light-weight semantic segmentation method (FASSD-Net) to boost the accuracy of two efficient HGR methods: Temporal Segment Networks (TSN) and Temporal Shift Modules (TSM). We demonstrate the efficiency of the proposal on our IPN Hand dataset, which includes thirteen different gestures focused on interaction with touchless screens. The experimental results show that our approach significantly overcomes the accuracy of the original TSN and TSM algorithms by keeping real-time performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3