Mn3O4 Catalysts for Advanced Oxidation of Phenolic Contaminants in Aqueous Solutions

Author:

Muhammad Syaifullah,Nugraha Muhammad WahyuORCID,Saputra EdyORCID,Arahman NasrulORCID

Abstract

Water-soluble organic pollutants, such as phenolic compounds, have been exposed to environments globally. They have a significant impact on groundwater and surface water quality. In this work, different Mn3O4 catalysts were prepared for metal oxide activation of peroxymonosulfate (PMS) to remove the phenolic compound from the water environment. The as-prepared catalysts were characterized using thermogravimetric-differential thermal analysis (TG-DTA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. Furthermore, the effect of temperature and reusability of the as-prepared Mn3O4 catalysts is also investigated. The Mn3O4 nanoparticles (NPs) catalyst reveals an excellent performance for activating PMS to remove phenol compounds. Mn3O4 NPs exhibits 96.057% efficiency in removing 25 ppm within 60 min. The kinetic analysis shows that Mn3O4 NPs fitted into pseudo-first order kinetic model and exhibited relatively low energy activation of 42.6 kJ/mol. The reusability test of Mn3O4 NPs displays exceptional stability with 84.29% efficiency after three-sequential cycles. The as-prepared Mn3O4 NPs is proven suitable for phenolic remediation in aqueous solutions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3