Data-Driven Community Flood Resilience Prediction

Author:

Abdel-Mooty Moustafa NaiemORCID,El-Dakhakhni Wael,Coulibaly Paulin

Abstract

Climate change and the development of urban centers within flood-prone areas have significantly increased flood-related disasters worldwide. However, most flood risk categorization and prediction efforts have been focused on the hydrologic features of flood hazards, often not considering subsequent long-term losses and recovery trajectories (i.e., community’s flood resilience). In this study, a two-stage Machine Learning (ML)-based framework is developed to accurately categorize and predict communities’ flood resilience and their response to future flood hazards. This framework is a step towards developing comprehensive, proactive flood disaster management planning to further ensure functioning urban centers and mitigate the risk of future catastrophic flood events. In this framework, resilience indices are synthesized considering resilience goals (i.e., robustness and rapidity) using unsupervised ML, coupled with climate information, to develop a supervised ML prediction algorithm. To showcase the utility of the framework, it was applied on historical flood disaster records collected by the US National Weather Services. These disaster records were subsequently used to develop the resilience indices, which were then coupled with the associated historical climate data, resulting in high-accuracy predictions and, thus, utility in flood resilience management studies. To further demonstrate the utilization of the framework, a spatial analysis was developed to quantify communities’ flood resilience and vulnerability across the selected spatial domain. The framework presented in this study is employable in climate studies and patio-temporal vulnerability identification. Such a framework can also empower decision makers to develop effective data-driven climate resilience strategies.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3