Miniaturized Hybrid Frequency Reader for Contactless Measurement Scenarios Using Resonant Surface Acoustic Wave Sensors

Author:

Scheiner BenedictORCID,Probst FlorianORCID,Michler FabianORCID,Weigel RobertORCID,Koelpin AlexanderORCID,Lurz FabianORCID

Abstract

Due to higher automation and predictive maintenance, it becomes more and more important to acquire as many data as possible during industrial processes. However, many scenarios require remote sensing since either moving parts would result in wear and tear of cables or harsh environments prevent a wired connection. In the last few years, resonant surface acoustic wave (SAW) sensors have promised the possibility to be interrogable wirelessly which showed very good results in first studies. Therefore, the sensor’s resonance frequency shifts due to a changed measurand and thus has to be determined. However, up to now frequency reader systems showed several drawbacks like high costs or insufficient accuracy that blocked the way for a widespread usage of this approach in the mass market. Hence, this article presents a miniaturized and low cost six-port based frequency reader for SAW resonators in the 2.45 GHz ISM band that does not require an external calculation unit. It is shown that it can be either used to evaluate the scenario or measure the frequency directly with an amplitude or phase measurement, respectively. The performance of the system, including the hardware and embedded software, is finally shown by wired and contactless torque measurements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3