Field-Assisted Sintering/Spark Plasma Sintering of Gadolinium-Doped Ceria with Controlled Re-Oxidation for Crack Prevention

Author:

Mishra Tarini PrasadORCID,Laptev Alexander M.ORCID,Ziegner Mirko,Sistla Sree KoundinyaORCID,Kaletsch Anke,Broeckmann Christoph,Guillon Olivier,Bram MartinORCID

Abstract

Gadolinium-Doped Ceria (GDC) is a prospective material for application in electrochemical devices. Free sintering in air of GDC powder usually requires temperatures in the range of 1400 to 1600 °C and dwell time of several hours. Recently, it was demonstrated that sintering temperature can be significantly decreased, when sintering was performed in reducing atmosphere. Following re-oxidation at elevated temperatures was found to be a helpful measure to avoid sample failure. Sintering temperature and dwell time can be also decreased by use of Spark Plasma Sintering, also known as Field-Assisted Sintering Technique (FAST/SPS). In the present work, we combined for the first time the advantages of FAST/SPS technology and re-oxidation for sintering of GDC parts. However, GDC samples sintered by FAST/SPS were highly sensitive to fragmentation. Therefore, we investigated the factors responsible for this effect. Based on understanding of these factors, a special tool was designed enabling pressureless FAST/SPS sintering in controlled atmosphere. For proof of concept, a commercial GDC powder was sintered in this tool in reducing atmosphere (Ar-2.9%H2), followed by re-oxidation. The fragmentation of GDC samples was avoided and the number of micro-cracks was reduced to a minimum. Prospects of GDC sintering by FAST/SPS were discussed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3