A Temperature-Dependent Model of Shape Memory Alloys Considering Tensile-Compressive Asymmetry and the Ratcheting Effect

Author:

Wang Longfei,Feng Peihua,Wu YingORCID,Liu ZishunORCID

Abstract

Tensile-compressive asymmetry and the ratcheting effect are two significant characteristics of shape memory alloys (SMAs) during uniaxial cyclic tests, thus having received substantial attention in research. In this study, by redefining the internal variables in SMAs by considering the cyclic accumulation of residual martensite, we propose a constitutive model for SMAs to simultaneously reflect tensile-compressive asymmetry and the cyclic ratcheting effect under multiple cyclic tests. This constitutive model is temperature dependent and can be used to reasonably capture the typical features of SMAs during tensile-compressive cyclic tests, which include the pseudo-elasticity at higher temperatures as well as the shape-memory effect at lower temperatures. Moreover, the proposed model can predict the cyclic mechanical behavior of SMAs subjected to applied stresses with different peak and valley values under tension and compression. Agreement between the predictions obtained from the proposed model and the published experimental data is observed, which confirms that the proposed novel constitutive model of SMAs is feasible.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3