Abstract
The precise determination of carrier concentration in doped semiconductor materials and nanostructures is of high importance. Many parameters of an operational device are dependent on the proper carrier concentration or its distribution in both the active area as well as in the passive parts as the waveguide claddings. Determining those in a nondestructive manner is, on the one hand, demanded for the fabrication process efficiency, but on the other, challenging experimentally, especially for complex multilayer systems. Here, we present the results of carrier concentration determination in In0.53Ga0.47As layers, designed to be a material forming quantum cascade laser active areas, using a direct and contactless method utilizing the Berreman effect, and employing Fourier-transform infrared (FTIR) spectroscopy. The results allowed us to precisely determine the free carrier concentration versus changes in the nominal doping level and provide feedback regarding the technological process by indicating the temperature adjustment of the dopant source.
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献