Author:
Takahama Umeo,Hirota Sachiko
Abstract
Foods are mixed with saliva in the oral cavity and swallowed. While staying in the stomach, saliva is contentiously provided to mix with the ingested foods. Because a salivary component of nitrite is protonated to produce active nitrous acid at acidic pH, the redox reactions of nitrous acid with phenolic compounds in foods become possible in the stomach. In the reactions, nitrous acid is reduced to nitric oxide (•NO), producing various products from phenolic compounds. In the products, stable hydroxybezoyl benzofuranone derivatives, which are produced from quercetin and its 7-O-glucoside, are included. Caffeic acid, chlorogenic acid, and rutin are oxidized to quinones and the quinones can react with thiocyanic acid derived from saliva, producing stable oxathiolone derivatives. 6,8-Dinitrosocatechis are produced from catechins by the redox reaction, and the dinitrocatechins are oxidized further by nitrous acid producing the quinones, which can make charge transfer complexes with the dinitrosocatechin and can react with thiocyanic acid producing the stable thiocyanate conjugates. In this way, various products can be produced by the reactions of salivary nitrite with dietary phenolic compounds, and reactive and toxic quinones formed by the reactions are postulated to be removed in the stomach by thiocyanic acid derived from saliva.
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献