Author:
Bavarinos Kostas,Dounis Anastasios,Kofinas Panagiotis
Abstract
In this paper, two universal reinforcement learning methods are considered to solve the problem of maximum power point tracking for photovoltaics. Both methods exhibit fast achievement of the MPP under varying environmental conditions and are applicable in different PV systems. The only required knowledge of the PV system are the open-circuit voltage, the short-circuit current and the maximum power, all under STC, which are always provided by the manufacturer. Both methods are compared to a Fuzzy Logic Controller and the universality of the proposed methods is highlighted. After the implementation and the validation of proper performance of both methods, two evolutionary optimization algorithms (Big Bang—Big Crunch and Genetic Algorithm) are applied. The results demonstrate that both methods achieve higher energy production and in both methods the time for tracking the MPP is reduced, after the application of both evolutionary algorithms.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献