Towards Fossil Free Cities—A Supermarket, Greenhouse & Dwelling Integrated Energy System as an Alternative to District Heating: Amsterdam Case Study

Author:

ten Caat Nick,Graamans Luuk,Tenpierik MartinORCID,van den Dobbelsteen AndyORCID

Abstract

The municipality of Amsterdam has set stringent carbon emission reduction targets: 55% by 2030 and 95% by 2050 for the entire metropolitan area. One of the key strategies to achieve these goals entails a disconnection of all households from the natural gas supply by 2040 and connecting them to the existing city-wide heat grid. This paper aims to demonstrate the value of considering local energy potentials at the city block level by exploring the potential of a rooftop greenhouse solar collector as a renewable alternative to centralized district heating. An existing supermarket and an ATES component complete this local energy synergy. The thermal energy balance of the three urban functions were determined and integrated into hourly energy profiles to locate and quantify the simultaneous and mismatched discrepancies between energy excess and demand. The excess thermal energy extracted from one 850 m2 greenhouse can sustain up to 47 dwellings, provided it is kept under specific interior climate set points. Carbon accounting was applied to evaluate the system performance of the business-as-usual situation, the district heating option and the local system. The avoided emissions due to the substitution of natural gas by solar thermal energy do not outweigh the additional emissions consequential to the fossil-based electricity consumption of the greenhouse’s crop growing lights, but when the daily photoperiod is reduced from 16 h to 12 h, the system performs equally to the business-as-usual situation. Deactivating growth lighting completely does make this local energy solution carbon competitive with district heating. This study points out that rooftop greenhouses applied as solar collectors can be a suitable alternative energy solution to conventional district heating, but the absence of growing lights will lead to diminished agricultural yields.

Funder

Joint Programming Initiative Urban Europe

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference65 articles.

1. Global warming, climate change, air pollution and allergies

2. Overview of challenges and achievements in the climate adaptation of cities and in the Climate Proof Cities program

3. Convention on Climate Change: Climate Agreement of Paris,2015

4. Nationale Broeikasgasemissies Volgens IPCC. Rijksoverheid http://www.emissieregistratie.nl/erpubliek/erpub/international/broeikasgassen.aspx

5. Routekaart-Amsterdam Klimaatneutraal 2050,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3