Dietary Complex and Slow Digestive Carbohydrates Prevent Fat Deposits During Catch-Up Growth in Rats

Author:

Salto RafaelORCID,Girón María DORCID,Ortiz-Moral CarolinaORCID,Manzano ManuelORCID,Vílchez Jose DORCID,Reche-Perez Francisco J,Bueno-Vargas PilarORCID,Rueda RicardoORCID,Lopez-Pedrosa Jose M

Abstract

A nutritional growth retardation study, which closely resembles the nutritional observations in children who consumed insufficient total energy to maintain normal growth, was conducted. In this study, a nutritional stress in weanling rats placed on restricted balanced diet for 4 weeks is produced, followed by a food recovery period of 4 weeks using two enriched diets that differ mainly in the slow (SDC) or fast (RDC) digestibility and complexity of their carbohydrates. After re-feeding with the RDC diet, animals showed the negative effects of an early caloric restriction: an increase in adiposity combined with poorer muscle performance, insulin resistance and, metabolic inflexibility. These effects were avoided by the SDC diet, as was evidenced by a lower adiposity associated with a decrease in fatty acid synthase expression in adipose tissue. The improved muscle performance of the SDC group was based on an increase in myocyte enhancer factor 2D (MEF2D) and creatine kinase as markers of muscle differentiation as well as better insulin sensitivity, enhanced glucose uptake, and increased metabolic flexibility. In the liver, the SDC diet promoted glycogen storage and decreased fatty acid synthesis. Therefore, the SDC diet prevents the catch-up fat phenotype through synergistic metabolic adaptations in adipose tissue, muscle, and liver. These coordinated adaptations lead to better muscle performance and a decrease in the fat/lean ratio in animals, which could prevent long-term negative metabolic alterations such as obesity, insulin resistance, dyslipidemia, and liver fat deposits later in life.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3