Abstract
Peatlands are remarkable for their specific biodiversity, crucial role in carbon cycling and climate change. Their deposits preserve organism remains that can be used to reconstruct long-term ecosystem and environmental changes as well as human impact in the prehistorical and historical past. This study presents a new multi-proxy reconstruction of the peatland and vegetation development investigating climate dynamics and human impact at the border between mixed and boreal forests in the Valdai Uplands (the East European Plain, Russia) during most of the Holocene. We performed plant macrofossil, pollen, testate amoeba, Cladocera, diatom, peat humification, loss on ignition, carbon and nitrogen content, δ13C and δ15N analyses supported by radiocarbon dating of the peat deposits from the Krivetskiy Mokh mire. The results of the study indicate that the wetland ecosystem underwent a classic hydroserial succession from a lake (8300 BC–900 BC) terrestrialized through a fen (900 BC–630 AD) to an ombrotrophic bog (630 AD–until present) and responded to climate changes documented over the Holocene. Each stage was associated with clear changes in local diversity of organisms responding mostly to autogenic successional changes during the lake stage and to allogenic factors at the fen-bog stage. The latter can be related to increased human impact and greater sensitivity of peatland ecosystems to external, especially climatic, drivers as compared to lakes.
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Reference105 articles.
1. The Biology of Peatlands;Rydin,2013
2. Peatland biodiversity and its restoration;Minayeva,2016
3. Global peatland dynamics since the Last Glacial Maximum
4. The postglacial development of boreal and subarctic peatlands;Kuhry,2006
5. The Myth of the Classic Hydrosere Model of Bog Succession
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献