Analysis of Deformation Characteristics of Foundation-Pit Excavation and Circular Wall

Author:

Gao XuheORCID,Tian Wei-ping,Zhang Zhipei

Abstract

The surrounding ground settlement and displacement control of an underground diaphragm wall during the excavation of a foundation pit are the main challenges for engineering safety. These factors are also an obstacle to the controllable and sustainable development of foundation-pit projects. In this study, monitoring data were analyzed to identify the deformation law and other characteristics of the support structure. A three-dimensional numerical simulation of the foundation-pit excavation process was performed in Midas/GTS NX. To overcome the theoretical shortcomings of parameter selection for finite-element simulation, a key data self-verification method was used. Results showed that the settlement of the surface surrounding the circular underground continuous wall was mainly affected by the depth of the foundation-pit excavation. In addition, wall deformation for each working condition showed linearity with clear staged characteristics. In particular, the deformation curve had obvious inflection points, most of which were located deeper than 2/3 of the overall excavation depth. The characteristics of the cantilever pile were not obvious in Working Conditions 3–9, but the distribution of the wall body offset in a D-shaped curve was evident. Deviation between the monitoring value of the maximal wall offset and the simulated value was only 4.31 %. The appropriate physical and mechanical parameters for key data self-verification were proposed. The concept of the circular-wall offset inflection point is proposed to determine the distribution of inflection-point positions and offset curves. The method provides new opportunities for the safety control and sustainable research of foundation-pit excavations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3