Surface Water Mapping from SAR Images Using Optimal Threshold Selection Method and Reference Water Mask

Author:

Kavats OlenaORCID,Khramov DmitriyORCID,Sergieieva KaterynaORCID

Abstract

Water resources are an important component of ecosystem services. During long periods of cloudiness and precipitation, when a ground-based sample is not available, the water bodies are detected from satellite SAR (synthetic-aperture radar) data using threshold methods (e.g., Otsu and Kittler–Illingworth). However, such methods do not enable to obtain the correct threshold value for the backscattering coefficient (σ0) of relatively small water areas in the image. The paper proposes and substantiates a method for the mapping of the surface of water bodies, which makes it possible to correctly identify water bodies, even in “water”/“land” class imbalance situations. The method operates on a principle of maximum compliance of the resulting SAR water mask with a given reference water mask. Therefore, the method enables the exploration of the possibilities of searching and choosing the optimal parameters (polarization and speckle filtering), which provide the maximum quality of SAR water mask. The method was applied for mapping natural and industrial water bodies in the Pohjois-Pohjanmaa region (North Ostrobothnia), Finland, using Sentinel-1A and -1B ground range detected (GRD) data (ascending and descending orbits) in 2018–2021. Reference water masks were generated based on optical spectral indices derived from Sentinel-2A and -2B data. The polarization and speckle filtering parameters were chosen since they provide the most accurate σ0 threshold (on average for all observations above 0.9 according to the Intersection over Union criterion) and are resistant to random fluctuations. If a reference water mask is available, the proposed method is more accurate than the Otsu method. Without a reference mask, the σ0 threshold is calculated as an average of thresholds obtained from previous observations. In this case, the proposed method is as good in accuracy as the Otsu method. It is shown that the proposed method enables the identification of surface water bodies under significant class imbalance conditions, such as when the water surface covers only a fraction of a percent of the area under study.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3