Study on Enhancing the Thermoelectric Stability of the β-Cu2Se Phase by Mn Doping

Author:

Tie Jian12,Xu Guiying1,Li Yawei3,Fan Xian3,Yang Quanxin1,Nan Bohang1

Affiliation:

1. Beijing Municipal Key Lab of Advanced Energy Materials and Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810016, China

3. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Cu2Se is a promising thermoelectric (TE) material due to its low cost, Earth abundance, and high thermoelectric properties. However, the biggest problem of Cu2Se is its unstable chemical properties. In particular, under the action of an electric field or gradient temperature field, the chemical potential of copper ions inside the material increases. When the external field is strong enough, the chemical potential of copper ions at the negative end of the material reaches the chemical potential of elemental copper. Under these conditions, copper ions must precipitate out, causing Cu2Se to be unstable, and making it unsuitable for use in applications. In this study, we prepared Cu2−xMnxSe (x = 0, 0.02, 0.04 and 0.06) series bulk materials by vacuum melting–annealing and sintered by spark plasma sintering (SPS). We investigated the effects of Mn doping on the composition, microstructure, band structure, scattering mechanism, thermoelectric properties, and stability of Cu2Se. The results show that Mn doping can adjust the carrier concentration, promote the stabilization of the β-phase structure and improve the electrical properties of Cu2Se. When x = 0.06, the highest power factor (PF) value of Cu1.94Mn0.06Se at 873 K was 1.62 mW m−1 K−2. The results of carrier scattering mechanism analysis based on the conductivity ratio method show that the sample doped with Mn and pure Cu2Se had the characteristics of ionization impurity scattering, and the scattering factor was 3/2. However, the deterioration in thermal conductivity was large, and a superior zT value needs to be obtained. The cyclic test results of high-temperature thermoelectric properties show that Mn doping can hinder Cu+ migration and improve its thermoelectric stability, which preliminarily verifies the feasibility of using the stable zirconia mechanism to improve the thermoelectric stability of Cu2Se.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Disruptive Innovation Funding Programs

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3