Influence of Strain Hardening Rate of Material on Temperature and Strain Distributions during Wire Drawing

Author:

Hwang Joong-Ki1ORCID

Affiliation:

1. School of Mechatronics Engineering, Korea University of Technology & Education, Cheonan 31253, Republic of Korea

Abstract

Temperature rise of a specimen is a significant issue in drawing industries for wire, rod, and bar products, because an excessive increase in temperature during the drawing process can deteriorate the product quality and die life. The influence of the strain hardening exponent (n) of a wire on the temperature and strain distributions during wire drawing is investigated to understand its effect and to improve the quality of drawn wire. Finite element analysis and experiments are conducted to analyze the temperature and strain distributions of wires with n values of 0.0, 0.1, 0.5, and 1.0. The temperature increase of the wire augments as the n of the wire increases, despite the same amount of ideal plastic deformation, which is associated closely with the redundant work. The shear strain increases with the n of the specimen, which generates redundant work, leading to a high temperature rise. Similarly, drawing force increases with the n of the specimen, owing to the increase in redundant work with the n of the wire. In addition, the drawing force presents a linear relationship with the temperature rise of the wire. The drawing speed should be reduced and/or the cooling of wire and die should be strengthened during wire drawing, with increasing n value of the wire, because product quality and die wear are highly associated with the temperature rise of the wire in the deformation zone.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3