Physicochemical Properties of Choline Chloride-Based Natural Deep Eutectic Solvents (NaDES) and Their Applicability for Extracting Oil Palm Flavonoids

Author:

Che Zain Mohamad ShazeliORCID,Yeoh Jen XenORCID,Lee Soo YeeORCID,Shaari KhozirahORCID

Abstract

Oil palm (Elaeis guineensis Jacq.) leaf (OPL) is abundantly generated from oil palm plantations as biomass that is rich in bioactive metabolites, primarily flavonoids. Six natural deep eutectic solvents (NaDES) were synthesized using a direct heating technique from different combinations of choline chloride with 1,2-propanediol (PD), 1,4-butanediol (BD), glycerol (GLY), glucose (GLU), maltose (MAL) and lactic acid (LA). The synthesized NaDES were subjected to physicochemical and biological evaluations comprising physical appearance, density, water activity, viscosity, polarity, thermal behaviors, spectroscopic analysis, cytotoxicity, radical scavenging activities and solubility tests. Compared to aqueous methanol, the synthesized NaDES, which appeared as a slightly to moderately viscous transparent liquid, showed favorable physicochemical properties as extraction solvents with a low cytotoxicity profile on cultured fibroblast cells. Further, the NaDES obtained from the choline chloride:lactic acid (LA) combination showed high free radical scavenging characteristics. Hydrogen bonding interactions were shown to play a significant role in the formation of the NaDES. Further, ultra-high-performance liquid chromatography ultraviolet/photodiode array (UHPLC-UV/PDA) analysis revealed that the NaDES from the choline chloride:glycerol (GLY) combination had comparable efficiencies with aqueous methanol regarding extracting flavonoids (luteolin and apigenin derivatives) from OPLs. The results of the present study suggested that the tailor-made NaDES were not only easy-to-use, stable and safe solvents but also suitable for extracting bioactive phytochemical compounds. The study highlighted their potential as an alternative green technology for applications in oil palm biomass utilization programs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3