Cr(VI) Adsorption from Aqueous Solution by UiO-66 Modified Corncob

Author:

Xie Hongzhong,Wan Yanlei,Chen Hao,Xiong Guangcheng,Wang LingqingORCID,Xu Qi,Li Xiang,Zhou Qiuhong

Abstract

To adsorb hexavalent chromium (Cr(VI)) in polluted water, this paper prepared a UiO-66 (Zr6O4(OH)4(BDC)12) modified granular corncob composite adsorbent by hydrothermal method with in situ loading of UiO-66 on pretreated corncob particles. The physicochemical properties of the synthesized samples were characterized. Batch adsorption experiments were conducted to investigate the adsorption process of aqueous Cr(VI) under various conditions (different ionic strength, pH and co-existing anions). The results showed that UiO-66 was successfully loaded on the modified corncob particles. The isothermal adsorption data of Cr(VI) adsorption by the UiO-66 modified corncob fit well with the Langmuir model with the maximum adsorption capacity of Cr(VI) on UiO-66@Corn+ being 90.04 mg/g. UiO-66 loading could increase Cr(VI) adsorption capacity of Corn+. The kinetic study showed that the equilibrium time for Cr(VI) adsorption on UiO-66 modified corncob was about 180 min and the kinetic data followed the pseudo-secondary kinetic model. The Cr(VI) adsorption capacity on UiO-66@Corn+ decreased with the increasing solution pH, and the optimum pH range was 4–6. The ionic strength has little effect on the Cr(VI) adsorption capacity, but the coexistence of CO32−, SO42− and PO43− in the solution could significantly decrease the equilibrium adsorption capacity of Cr(VI). The adsorption mechanism analysis showed that Cr(VI) was adsorbed on the surface of adsorbents through electrostatic attraction and was reduced further to the less toxic Cr(III) by the electron donor on the surface of adsorbent. The electrostatic interaction was the main force affecting the adsorption of Cr(VI) by UiO-66. UiO-66@Corn+ had an excellent removal efficiency of Cr(VI) and excellent reusability. UiO-66@Corn+ could effectively remove Cr(VI) from water and have a promising application.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3