Characterization of Pore Size Distribution and Water Transport of UHPC Using Low-Field NMR and MIP

Author:

Xiong Xin-Rui12ORCID,Wang Jun-Yan12,She An-Ming12ORCID,Lin Jian-Mao3

Affiliation:

1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

2. Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 201804, China

3. Fujian Expressway Science and Technology Innovation Research Institute Co., Ltd., Fuzhou 350001, China

Abstract

Water transport is vital for the durability of ultra-high performance concrete (UHPC) in engineering, but its absorption behavior requires further comprehension. This study investigates the impact of silica fume (SF) and metakaolin (MK) on water absorption in UHPC matrix with a high volume of limestone powder (LS) under two curing temperatures, and the variation in water transport with pore size obtained by low field nuclear magnetic resonance (LF-NMR). Relations between cumulative water absorption with other properties were discussed, and the pore size distribution (PSD) measured by Mercury intrusion porosimetry (MIP) was compared with that determined by LF-NMR. Results showed that MK outperformed SF in reducing water absorption in UHPC matrix, containing 30% LS under steam curing due to the synergistic effect between MK and LS. The incorporation of LS greatly affected the water absorption process of UHPC matrix. In samples without LS, capillary and gel pores absorbed water rapidly within the first 6 h and slowly from 6 h to 48 h simultaneously. However, in samples with 30% LS, gel pore water decreased during water absorption process due to the coarsening of gel pores. MK was able to suppress gel pore deterioration caused by the addition of a large amount of LS. Compared with PSD measured by MIP, NMR performed better in detecting micropores (<10 nm).

Funder

National Nature Science Foundation of China

introductory science and technology plan project of Fujian province

Ningbo major science and technology project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3