Affiliation:
1. Southwest Technology and Engineering Research Institute, Chongqing 400039, China
2. School of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China
Abstract
The microstructure and mechanical properties of semi-continuous casting Mg-Gd-Y-Zr magnesium alloys with different Zn contents were studied in this paper. The results showed that an increase in Zn content resulted in gradual refinement of the grains and a gradual increase in the volume fraction of the second phase. At a Zn content of 0.7 wt%, the microstructure was mainly composed of the α-Mg matrix and the Mg5(GdY) and long-period stacking order (LPSO) phases. An increase in the Zn content lowered the volume fraction of the Mg5(GdY) phase and increased the volume fraction of the LPSO phase. At a Zn content of 3.3 wt%, the microstructure was mainly composed of the α-Mg matrix and the LPSO phase. Among these alloys, the alloy without Zn addition showed an optimal ultimate tensile strength and yield strength of 229 MPa and 185 MPa, respectively, while the alloy with 3.3 wt% Zn showed an excellent elongation after fracture of 4.5%. The tensile fracture analysis indicated that the cracks of the alloy without Zn mainly originated at the trigeminal junction of the grain boundary, the cracks of the 0.7 wt% Zn and 1.5 wt% Zn alloy mainly originated at the interface of the Mg/lamellar LPSO phase, and the cracks of the 3.3 wt% Zn alloy mainly originated at the bulk LPSO phase of the grain boundary and then propagated along the bulk LPSO phase.
Funder
Natural Science Foundation of Chongqing
Science and Technology Research Project of Chongqing Municipal Education Commission
Special key project of technological innovation and application development in Chongqing
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献