A Novel Hydro-Thermal Synthesis of Nano-Structured Molybdenum-Iron Intermetallic Alloys at Relatively Low Temperatures

Author:

El-Geassy A. A.1,Abdel Halim K. S.21ORCID,Alghamdi Abdulaziz S.2ORCID

Affiliation:

1. Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Egypt

2. College of Engineering, University of Ha’il, P.O. Box 2440, Hail 55476, Saudi Arabia

Abstract

Nano-structured Mo/Fe intermetallics were synthesized from precursors that contained 72/28% and 30/70% molar ratios of Mo/Fe, which were given as precursors A and B, respectively. These precursors were prepared from the co-precipitation of aqueous hot solutions of ammonium heptamolybdate tetrahydrate (AHM) and ferrous oxalate. The dry precipitates were thermally treated using TG-DSC to follow up their behavior during roasting, in an Ar atmosphere of up to 700 °C (10° K/min). The TG profile showed that 32.5% and 55.5% weight losses were measured from the thermal treatment of precursors A and B, respectively. The DSC heat flow profile showed the presence of endothermic peaks at 196.9 and 392.5–400 °C during the thermal decomposition of the AHM and ferrous oxalate, respectively. The exothermic peak that was detected at 427.5 °C was due to the production of nano-sized iron molybdate [Fe2(MoO4)3]. An XRD phase analysis indicated that iron molybdate was the only phase that was identified in precursor A, while iron molybdate and Fe2O3 were produced in precursor B. Compacts were made from the pressing of the nano-sized precursors, which were roasted at 500 °C for 3 h. The roasted compacts were isothermally reduced in H2 at 600–850 °C using microbalance, and the O2 weight loss that resulted from the reduction reactions was continuously recorded as a function of time. The influence of the reduction temperature and precursor composition on the reduction behavior of the precursors was studied and discussed. The partially and completely reduced compacts were examined with X-ray powder diffraction (XRD), a reflected light microscope (RLM), and a scanning electron microscope (SEM-EDS). Depending on the precursor composition, the reduction reactions of the [Fe2(MoO4)3] and Fe2O3 proceeded through the formation of intermediate lower oxides, prior to the production of the MO/Fe intermetallic alloys. Based on the intermediate phases that were identified and characterized at the early, intermediate, and final reduction degrees, chemical reaction equations were given to follow up the formation of the MoFe and MoFe3 intermetallic alloys. The mechanism of the reduction reactions was predicted from the apparent activation energy values (Ea) that were computed at the different reduction degrees. Moreover, mathematical formulations that were derived from the gas–solid reaction model were applied to confirm the reduction mechanisms, which were greatly dependent on the precursor composition and reduction temperature. However, it can be reported that nano-structured MoFe and MoFe3 intermetallic alloys can be successfully fabricated via a gas–solid reaction technique at lower temperatures.

Funder

Scientific Research Deanship at University of Ha’il—Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3