Rainfall Induced Shallow Landslide Temporal Probability Modelling and Early Warning Research in Mountains Areas: A Case Study of Qin-Ba Mountains, Western China

Author:

Song Yufei,Fan Wen,Yu Ningyu,Cao YanboORCID,Jiang Chengcheng,Chai Xiaoqing,Nan Yalin

Abstract

The rainfall-induced landslide early warning model (LEWM) is an important means to mitigate property loss and casualties, but the conventional discriminant matrix-based LEWM (DLEWM) leaves room for subjectivity and limits warning accuracy. Additionally, it is important to employ appropriate indicators to evaluate warning model performance. In this study, a new method for calculating the spatiotemporal probability of rainfall-induced landslides based on a Bayesian approach is proposed, and a probabilistic-based LEWM (PLEWM) at the regional scale is developed. The method involves four steps: landslide spatial probability modeling, landslide temporal probability modeling, coupling of spatial and temporal probability models, and the conversion method from the spatiotemporal probability index to warning levels. Each step follows the law of probability and is tested with real data. At the same time, we propose the idea of using economic indicators to evaluate the performance of the multilevel LEWM and reflect its significant and unique aspects. The proposed PLEWM and the conventional DLEWM are used to conduct simulate warnings for the study area day-by-day in the rainy season (July-September) from 2016 to 2020. The results show that the areas of the 2nd-, 3rd-, and 4th-level warning zones issued by the PLEWM account for 60.23%, 45.99%, and 43.98% of those of the DLEWM, respectively. The investment in issuing warning information and the losses caused by landslides account for 54.54% and 59.06% of those of the DLEWM, respectively. Moreover, under extreme rainfall conditions, the correct warning rate of the PLEWM is much higher than that of the DLEWM.

Funder

National Key R&D Program of China

Department of Science and Technology of Shaanxi Province

Fundamental Research Funds for the Central University, CHD

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference80 articles.

1. Characteristics of rapid giant landslides in China;Landslides,2004

2. Global patterns of loss of life from landslides;Geology,2012

3. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process;J. Mt. Sci.,2017

4. Global fatal landslide occurrence from 2004 to 2016;Nat. Hazards Earth Syst. Sci.,2018

5. The Rise and Fall of a Debris-Flow Warning System for the San Francisco Bay Region, California;Landslide Hazard Risk,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3