A 3D Space-Time Non-Local Mean Filter (NLMF) for Land Changes Retrieval with Synthetic Aperture Radar Images

Author:

Pepe AntonioORCID

Abstract

Sequences of multi-temporal synthetic aperture radar (SAR) images are routinely used for land-use land-change (LULC) applications, allowing the retrieval of accurate and up-to-date information on the state of the Earth’s surface and its temporal variations. Change detection (CD) methods that rely on the exploitation of SAR data are, generally, made of three distinctive steps: (1) pre-processing of the SAR images; (2) comparison of the pairs of SAR images; and (3) the automatic extraction of the “changed areas”, employing proper thresholding algorithms. Within this general framework, the reduction in speckle noise effects, which can be obtained by applying spatial multi-looking operations and ad hoc noise filters, is fundamental for the better detecting and classifying of changed regions. Usually, speckle noise filters are singularly and independently applied to every SAR image without the consideration of their inherent temporal relationships. In particular, most use local (spatial) approaches based on determining and averaging SAR backscattered signals related to neighboring SAR pixels. In this work, conversely, we explore the potential of a joint 3D space-time non-local mean filter (NLMF), which relies on the discrimination of similar features in a block of non-local SAR pixels extracted from the same or different SAR images. The theory behind non-local-mean filters is, first, shortly revised. Then, the developed space-time NLMF is applied to a real test case for the purposes of identifying flooded zones due to the massive inundations that hit the Kerala region, India, during the summer of 2018. To this aim, a set of 18 descending SAR images collected from the European (EU) Copernicus Sentinel-1 (S-1) sensor was exploited. The performance of the developed NLMF has also been assessed. It is worth remarking that the proposed method can be applied for the purposes of analyzing a heterogenous set of natural and/or artificial disastrous conditions. Further, it can also be helpful during the pre-processing stages of the sequences of SAR images for the purposes of CD applications.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3