Gaussian Process Modeling of In-Season Physiological Parameters of Spring Wheat Based on Airborne Imagery from Two Hyperspectral Cameras and Apparent Soil Electrical Conductivity

Author:

Żelazny Wiktor R.ORCID,Kusnierek KrzysztofORCID,Geipel JakobORCID

Abstract

The remote sensing of the biophysical and biochemical parameters of crops facilitates the preparation of application maps for variable-rate nitrogen fertilization. According to comparative studies of machine learning algorithms, Gaussian process regression (GPR) can outperform more popular methods in the prediction of crop status from hyperspectral data. The present study evaluates GPR model accuracy in the context of spring wheat dry matter, nitrogen content, and nitrogen uptake estimation. Models with the squared exponential covariance function were trained on images from two hyperspectral cameras (a frenchFabry–Pérot interferometer camera and a push-broom scanner). The most accurate predictions were obtained for nitrogen uptake (R2=0.75–0.85, RPDP=2.0–2.6). Modifications of the basic workflow were then evaluated: the removal of soil pixels from the images prior to the training, data fusion with apparent soil electrical conductivity measurements, and replacing the Euclidean distance in the GPR covariance function with the spectral angle distance. Of these, the data fusion improved the performance while predicting nitrogen uptake and nitrogen content. The estimation accuracy of the latter parameter varied considerably across the two hyperspectral cameras. Satisfactory nitrogen content predictions (R2>0.8, RPDP>2.4) were obtained only in the data-fusion scenario, and only with a high spectral resolution push-broom device capable of capturing longer wavelengths, up to 1000 nm, while the full-frame camera spectral limit was 790 nm. The prediction performance and uncertainty metrics indicated the suitability of the models for precision agriculture applications. Moreover, the spatial patterns that emerged in the generated crop parameter maps accurately reflected the fertilization levels applied across the experimental area as well as the background variation of the abiotic growth conditions, further corroborating this conclusion.

Funder

Ministry of Education, Youth and Sports of the Czech Republic

Ministry of Agriculture of the Czech Republic institutional support

EU Interreg ÖKS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference77 articles.

1. Benefits of Increasing Information Accuracy in Variable Rate Technologies;Späti;Ecol. Econ.,2021

2. COVID-19 and its Global Impact on Food and Agriculture;Poudel;J. Biol. Today’s World,2020

3. War in Ukraine and its Effect on Fertilizer Exports to Brazil and the U.S;Colussi;Farmdoc Dly.,2022

4. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management;Lemaire;Eur. J. Agron.,2008

5. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method;Berger;Int. J. Appl. Earth Obs. Geoinf.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3