Tempo-Spatial Distributions and Transport Characteristics of Two Dust Events over Northern China in March 2021

Author:

Sun XiaoguangORCID,Fan Xuehua,Zhang Tianle,Wang Yinan,Wang YuntaoORCID,Lyu Daren,Zheng Mei

Abstract

The Taklamakan Desert and the Gobi Desert in East Asia constitute the second-largest sources of dust in the world. In particular, dust originating from the Gobi Desert is more susceptible to long-range transport, with consequent impacts in downwind Asian countries and the Northwest Pacific region. Two intensive dust events (the 3·15 dust event and the 3·28 dust event) were experienced in North China in March 2021. The 3·15 dust process was rated as the most intensive dust process in China in the past 10 years. In this study, by using a combination of spaceborne remote sensing datasets from geostationary and polar-orbiting satellites, ground-based columnar observations of aerosol optical parameters, meteorological reanalysis data, and backward trajectory simulations of air masses, the transport pathways and the three-dimensional structure characteristics of dust aerosols during the transport of the two dust events in March 2021 were cross-validated. The results of the study indicated that the two dust events were induced by the Mongolian cyclone. Due to the different configurations of the ground meteorological system conditions, a backflow process occurred during the 3·15 dust event transmission process. After passing over North China and the Bohai Sea, the direction of transport of the dust plume was reversed. The wind deflected from northwest to northeast, and the dust reached the eastern coastal areas of China and was finally deposited on land. The 3·28 dust event exhibited aerosol stratification in the transport path, the higher pure dust layer reached up to 9 km height, and the lower layer underwent aerosol mixing and became a polluted dust aerosol. This study implies that the investigation of dust aerosol transport and the deposition processes, the impact on the ocean, and the impact of marine aerosols on land also needs to be taken into consideration; the integration of advanced satellites and ground-based remote sensing data, the meteorological reanalysis data and the backward trajectories simulation, which complemented and verified each other, can enhance the ability to delineate the transport pathways and the three-dimensional structural characteristics of dust events.

Funder

National Natural Science Foundation of China

Opening Foundation of Key Laboratory of Atmosphere Sounding, China Meteorological Administration and CMA Research Centre on Meteorological Observation Engineering Technology

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3