Spatiotemporal Assessment of Forest Fire Vulnerability in China Using Automated Machine Learning

Author:

Ren Hongge,Zhang Li,Yan Min,Chen BoweiORCID,Yang Zhenyu,Ruan Linlin

Abstract

Frequent forest fires cause air pollution, threaten biodiversity and spoil forest ecosystems. Forest fire vulnerability assessment is a potential way to improve the ability of forests to resist climate disasters and help formulate appropriate forest management countermeasures. Here, we developed an automated hybrid machine learning algorithm by selecting the optimal model from 24 models to map potential forest fire vulnerability over China during the period 2001–2020. The results showed forest aboveground biomass (AGB) had a vulnerability of 26%, indicating that approximately 2.32 Gt C/year of forest AGB could be affected by fire disturbances. The spatiotemporal patterns of forest fire vulnerability were dominated by both forest characteristics and climate conditions. Hotspot regions for vulnerability were mainly located in arid areas in western China, mountainous areas in southwestern China, and edges of vegetation zones. The overall forest fire vulnerability across China was insignificant. The forest fire vulnerability of boreal and temperate coniferous forests and mixed forests showed obviously decreasing trends, and cultivated forests showed an increasing trend. The results of this study are expected to provide important support for the forest ecosystem management in China.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference84 articles.

1. Climate Change and Forest Diseases;Plant Pathol.,2011

2. Climate Change and Ecosystems: Threats, Opportunities and Solutions;Philos. Trans. R. Soc. B Biol. Sci.,2020

3. Hassan, R., Scholes, R., Ash, N., Condition, M., and Group, T. (2005). Ecosystems and Human Well-Being: Current State and Trends, Island Press.

4. FAO (2020). Global Forest Resources Assessment 2020, FAO.

5. Decadal Changes in Fire Frequencies Shift Tree Communities and Functional Traits;Nat. Ecol. Evol.,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3