Plant Density Estimation Using UAV Imagery and Deep Learning

Author:

Peng Jinbang,Rezaei Ehsan EyshiORCID,Zhu WanxueORCID,Wang DongliangORCID,Li HeORCID,Yang Bin,Sun Zhigang

Abstract

Plant density is a significant variable in crop growth. Plant density estimation by combining unmanned aerial vehicles (UAVs) and deep learning algorithms is a well-established procedure. However, flight companies for wheat density estimation are typically executed at early development stages. Further exploration is required to estimate the wheat plant density after the tillering stage, which is crucial to the following growth stages. This study proposed a plant density estimation model, DeNet, for highly accurate wheat plant density estimation after tillering. The validation results presented that (1) the DeNet with global-scale attention is superior in plant density estimation, outperforming the typical deep learning models of SegNet and U-Net; (2) the sigma value at 16 is optimal to generate heatmaps for the plant density estimation model; (3) the normalized inverse distance weighted technique is robust to assembling heatmaps. The model test on field-sampled datasets revealed that the model was feasible to estimate the plant density in the field, wherein a higher density level or lower zenith angle would degrade the model performance. This study demonstrates the potential of deep learning algorithms to capture plant density from high-resolution UAV imageries for wheat plants including tillers.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Key Research and Development Program of China

National Natural Science Foundation of China

Program of Yellow River Delta Scholars

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3