Satellite Remote Sensing Identification of Discolored Standing Trees for Pine Wilt Disease Based on Semi-Supervised Deep Learning

Author:

Wang JiahaoORCID,Zhao Junhao,Sun Hong,Lu XiaoORCID,Huang Jixia,Wang ShaohuaORCID,Fang Guofei

Abstract

Pine wilt disease (PWD) is the most dangerous biohazard of pine species and poses a serious threat to forest resources. Coupling satellite remote sensing technology and deep learning technology for the accurate monitoring of PWD is an important tool for the efficient prevention and control of PWD. We used Gaofen-2 remote sensing images to construct a dataset of discolored standing tree samples of PWD and selected three semantic segmentation models—DeepLabv3+, HRNet, and DANet—for training and to compare their performance. To build a GAN-based semi-supervised semantic segmentation model for semi-supervised learning training, the best model was chosen as the generator of generative adversarial networks (GANs). The model was then optimized for structural adjustment and hyperparameter adjustment. Aimed at the characteristics of Gaofen-2 images and discolored standing trees with PWD, this paper adopts three strategies—swelling prediction, raster vectorization, and forest floor mask extraction—to optimize the image identification process and results and conducts an application demonstration study in Nanping city, Fujian Province. The results show that among the three semantic segmentation models, HRNet was the optimal conventional semantic segmentation model for identifying discolored standing trees of PWD based on Gaofen-2 images and that its MIoU value was 68.36%. Additionally, the GAN-based semi-supervised semantic segmentation model GAN_HRNet_Semi improved the MIoU value by 3.10%, and its recognition segmentation accuracy was better than the traditional semantic segmentation model. The recall rate of PWD discolored standing tree monitoring in the demonstration area reached 80.09%. The combination of semi-supervised semantic segmentation technology and high-resolution satellite remote sensing technology provides new technical methods for the accurate wide-scale monitoring, prevention, and control of PWD.

Funder

the National Key R&D Program of China

the National Key Research and Development Program of China

the Major Emergency Science and Technology Projects of the State Forestry and Grassland Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Pine Wilt Disease and the Pinewood Nematode, Bursaphelenchus Xylophilus;Integrated Management of Fruit Crops Nematodes,2009

2. Applying a spread model to identify the entry points from which the pine wood nematode, the vector of pine wilt disease, would spread most rapidly across Europe;Biol. Invasions,2011

3. Occurrence and control status of pine wilt diseases;Nat. Enemies Insects,2018

4. Research on pine wilt disease in China;World For. Res.,2010

5. Distribution characteristics and control ideas of pine wood nematode in Xiangshan County, Ningbo;China For. Sci. Technol.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3