Climatological Drought Monitoring in Switzerland Using EUMETSAT SAF Satellite Data

Author:

Rassl Annkatrin,Michel Dominik,Hirschi MartinORCID,Duguay-Tetzlaff AnkeORCID,Seneviratne Sonia I.ORCID

Abstract

Climatological drought monitoring in Switzerland relies heavily on station-based precipitation and temperature data. Due to the high spatial variability and complexity of droughts, it is important to complement station-based drought indices with gridded information and to couple multiple drought indicators within the monitoring system. Here, long-term satellite-based drought parameters from the EUMETSAT SAF network are analyzed in terms of dry anomalies within their climatology’s, namely ASCAT soil water index (SWI), CM SAF land surface temperature (LST), complemented with NOAA vegetation data, and LSA SAF Meteosat evapotranspiration data. The upcoming EUMETSAT SAF climate data records on land surface temperature and evapotranspiration will cover for the first time the WMO climatological 30-year reference period. This study is the first study investigating the potential of those long-term data records for climate monitoring of droughts in Europe. The satellite datasets are compared with the standardized precipitation index (SPI), soil moisture observations from the SwissSMEX measurement network, with a modelled soil moisture index (SMI) based on observations, and with evapotranspiration measurements, focusing on the temporal dynamics of the anomalies. For vegetation and surface temperature, the dry years of 2003, 2015, and 2018 are clearly visible in the satellite data. CM SAF LSTs show strong anomalies at the beginning of the drought period. The comparison of in situ and modelled soil moisture and evapotranspiration measurements with the satellite parameters shows strong agreement in terms of anomalies. The SWI indicates high anomaly correlations of 0.56 to 0.83 with measurements and 0.63 to 0.76 with the SMI at grassland sites. The Meteosat evapotranspiration data strongly agree with the measurements, with anomaly correlations of 0.63 and 0.67 for potential and actual evapotranspiration, respectively. Due to the prevailing humid climate conditions at the considered sites, evapotranspiration anomalies during the investigated dry periods were mostly positive and thus not water limited, but were also a driver for soil moisture drought. The results indicate that EUMETSAT SAF satellite data can well complement the station-based drought monitoring in Switzerland with spatial information.

Funder

Federal Office of Meteorology and Climatology MeteoSwiss

GCOS Switzerland

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Burton, I., Kates, R.W., and White, G.F. (1978). The Environment as Hazard, Oxford University Press.

2. World Meteorological Organization (WMO), and Global Water Partnership (GWP) (2021, October 14). National Drought Management Policy Guidelines: A Template for Action. Available online: https://www.droughtmanagement.info/literature/IDMP_NDMPG_en.pdf.

3. FOEN Umwelt-Zustand.

4. MeteoSwiss (2018). Hitze und Trockenheit im Sommerhalbjahr 2018–eine klimatologische Übersicht. Fachber. MeteoSchweiz, 272, 38.

5. FOEN Umwelt-Zustand.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3