Augmentation of Densest Subgraph Finding Unsupervised Feature Selection Using Shared Nearest Neighbor Clustering

Author:

Chugh Deepesh,Mittal Himanshu,Saxena Amit,Chauhan RituORCID,Yafi EiadORCID,Prasad MukeshORCID

Abstract

Determining the optimal feature set is a challenging problem, especially in an unsupervised domain. To mitigate the same, this paper presents a new unsupervised feature selection method, termed as densest feature graph augmentation with disjoint feature clusters. The proposed method works in two phases. The first phase focuses on finding the maximally non-redundant feature subset and disjoint features are added to the feature set in the second phase. To experimentally validate, the efficiency of the proposed method has been compared against five existing unsupervised feature selection methods on five UCI datasets in terms of three performance criteria, namely clustering accuracy, normalized mutual information, and classification accuracy. The experimental analyses have shown that the proposed method outperforms the considered methods.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference38 articles.

1. Recent advances and emerging challenges of feature selection in the context of big data;Knowl.-Based Syst.,2015

2. Bellman, R. (1957). Dynamic Programming, Princeton University Press.

3. Keogh, E., and Mueen, A. (2017). Encyclopedia of Machine Learning and Data Mining, Springer.

4. Wrappers for feature subset selection;Kohavi;Artif. Intell.,1997

5. An Introduction of Variable and Feature Selection;Guyon;J. Mach. Learn. Res. Spec. Issue Var. Feature Sel.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3