On the Numerical Treatment of the Temporal Discontinuity Arising from a Time-Varying Point Mass Attachment on a Waveguide

Author:

Manolis George D.ORCID,Dadoulis Georgios I.ORCID

Abstract

A vibrating pylon, modeled as a waveguide, with an attached point mass that is time-varying poses a numerically challenging problem regarding the most efficient way for eigenvalue extraction. The reason is three-fold, starting with a heavy mass attachment that modifies the original eigenvalue problem for the stand-alone pylon, plus the fact that the point attachment results in a Dirac delta function in the mixed-type boundary conditions, and finally the eigenvalue problem becomes time-dependent and must be solved for a sequence of time steps until the time interval of interests is covered. An additional complication is that the eigenvalues are now complex quantities. Following the formulation of the eigenvalue problem as a system of first-order, time-dependent matrix differential equations, two eigenvalue extraction methods are implemented and critically examined, namely the Laguerre and the QR algorithms. The aim of the analysis is to identify the most efficient technique for interpreting time signals registered at a given pylon as a means for detecting damage, a procedure which finds application in structural health monitoring of civil engineering infrastructure.

Funder

German Research Foundation

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3