Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 2—Detailed Characterisation of the Coatings and Their Growth Mechanism

Author:

Murphy Bríd12ORCID,Morris Mick A.12,Baez Jhonattan12ORCID

Affiliation:

1. Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 CP49 Dublin 2, Ireland

2. School of Chemistry, Trinity College Dublin, D02 PN40 Dublin 2, Ireland

Abstract

This study is the second part of a two-part study whereby supersaturated solutions of calcium and phosphate ions generate well-defined hydroxyapatite coatings for orthopaedic implants. An ‘ideal’ process solution is selected from Part 1, and the detailed characterisation of films produced from this solution is undertaken here in Part 2. Analysis is presented on the hydroxyapatite produced, in both powder form and as a film upon titanium substrates representative of orthopaedic implants. From thermal analysis data, it is shown that there is bound and interstitial water present in the hydroxyapatite. Nuclear magnetic resonance data allow for the distinction between an amorphous and a crystalline component of the material. As hydroxyapatite coatings are generated, their growth mechanism is tracked across repeated process runs. A clear understanding of the growth mechanism is achieved though crystallinity and electron imaging data. Transmission electron imaging data support the proposed crystal growth and deposition mechanism. All of the data conclude that this process has a clear propensity to grow the hydroxyapatite phase of octacalcium phosphate. The investigation of the hydroxyapatite coating and its growth mechanism establish that a stable and reproducible process window has been identified. Precise control is achieved, leading to the successful formation of the desired hydroxyapatite films.

Funder

Science Foundation Ireland

European Regional Development Fund

DePuy Synthes

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3