Color Rendering Index over 95 Achieved by Using Light Recycling Process Based on Hybrid Remote-Type Red Quantum-Dot Components Applied to Conventional LED Lighting Devices

Author:

Baek Eunki1,Kim Boseong1,Kim Sohee1,Song Juyeon1,Yoo Jaehyeong1,Park Sung Min1,Lee Jong-Min1ORCID,Ko Jae-Hyeon1ORCID

Affiliation:

1. Nano Convergence Technology Center, School of Semiconductor∙Display Technology, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea

Abstract

Red color conversion materials have often been used in conventional white LEDs (light-emitting diodes) to enhance the insufficient deep-red component and thus improve the color-rendering property. Quantum dots (QDs) are one of the candidates for this due to their flexibility in controlling the emission wavelength, which is attributed to the quantum confinement effect. Two types of remote QD components, i.e., QD films and QD caps, were prepared and applied to conventional white LED illumination to improve the color-rendering properties. Thanks to the red component near 630 nm caused by the QD components, the color rendering indices (CRIs) of both Ra and R9 could be increased to over 95. It was found that both the diffusing nature of the reflector and the light recycling process in the vertical cavity between the bottom reflector and the top optical films play important roles in improving the color conversion efficiency of remote QD components. The present study showed that the proper application of remote QDs combined with a suitable optical cavity can control the correlated color temperature of the illumination over a wide range, thus realizing different color appearances of white LED illumination. In addition, a high CRI of over 95 could be achieved due to the sufficient excitation from fewer QDs, due to the strong optical cavity effect.

Funder

Korean government

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3