Affiliation:
1. Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
2. GD Changguang Zhongke Bio Co., Ltd., Foshan 528200, China
Abstract
Longitudinal optical field modulation is very important for applications such as optical imaging, spectroscopy, and optical manipulation. It can achieve high-resolution imaging or manipulation of the target object, but it is also limited by its depth of focus. The depth of focus determines whether the target object can be clearly imaged or manipulated at different distances, so extending the depth of focus can improve the adaptability and flexibility of the system. However, how to extend the depth of focus is still a significant challenge. In this paper, we use a super-oscillation phase modulation optimization method to design a polarization-independent metalens with extended focal depth, taking the axial focal depth length as the optimization objective. The optimized metalens has a focal depth of 13.07 μm (about 22.3 λ), and in the whole focal depth range, the transverse full width at half maximum values are close to the Rayleigh diffraction limit, and the focusing efficiency is above 10%. The results of this paper provide a new idea for the design of a metalens with a long focal depth and may have application value in imaging, lithography, and detection.
Funder
National Natural Science Foundation of China
Strategic Priority Research Program of Chinese Academy of Sciences
Industrialization Innovation Team Project
Foshan Institute of Industrial Technology, Chinese Academy of Sciences
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献