Graphitic Carbon Nitride Nanosheets Decorated with Zinc-Cadmium Sulfide for Type-II Heterojunctions for Photocatalytic Hydrogen Production

Author:

Yousaf Ammar Bin1,Imran Muhammad2ORCID,Farooq Muhammad3,Kausar Samaira4,Yasmeen Samina4,Kasak Peter1ORCID

Affiliation:

1. Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar

2. Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China

3. Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan

4. Department of Chemistry, National Science College, Satellite Town, Gujranwala 52250, Pakistan

Abstract

In this study, we fabricated graphitic carbon nitride (g-C3N4) nanosheets with embedded ZnCdS nanoparticles to form a type II heterojunction using a facile synthesis approach, and we used them for photocatalytic H2 production. The morphologies, chemical structure, and optical properties of the obtained g-C3N4–ZnCdS samples were characterized by a battery of techniques, such as TEM, XRD, XPS, and UV-Vis DRS. The as-synthesized g-C3N4–ZnCdS photocatalyst exhibited the highest hydrogen production rate of 108.9 μmol·g−1·h−1 compared to the individual components (g-C3N4: 13.5 μmol·g−1·h−1, ZnCdS: 45.3 μmol·g−1·h−1). The improvement of its photocatalytic activity can mainly be attributed to the heterojunction formation and resulting synergistic effect, which provided more channels for charge carrier migration and reduced the recombination of photogenerated electrons and holes. Meanwhile, the g-C3N4–ZnCdS heterojunction catalyst also showed a higher stability over a number of repeated cycles. Our work provides insight into using g-C3N4 and metal sulfide in combination so as to develop low-cost, efficient, visible-light-active hydrogen production photocatalysts.

Funder

Qatar University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3