The Effect of Cellulose Nanofibres on Dewatering during Wet-Forming and the Mechanical Properties of Thermoformed Specimens Made of Thermomechanical and Kraft Pulps

Author:

Jacobsen Eirik Ulsaker1,Følkner Simen Prang2ORCID,Blindheim Jørgen1ORCID,Molteberg Dag2,Steinert Martin1ORCID,Chinga-Carrasco Gary3ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), Richard Birkelandsvei 2B, 7491 Trondheim, Norway

2. Norske Skog Saugbrugs, Tistedalsgt. 9-11, 1772 Halden, Norway

3. RISE PFI, Høgskoleringen 6b, 7491 Trondheim, Norway

Abstract

Due to environmental concerns regarding single-use plastic materials, major efforts are being made to develop new material concepts based on biodegradable and renewable resources, e.g., wood pulp. In this study, we assessed two types of wood pulp fibres, i.e., thermomechanical pulp (TMP) and Kraft pulp fibres, and tested the performance of the fibres in wet-moulding and thermopressing trials. Kraft pulp fibres appeared to retain more water than TMP, increasing the dewatering time during wet-moulding and apparently increasing the compression resistance of the pulp during thermoforming. Additionally, cellulose nanofibres (CNF) were added to the pulps, which improved the mechanical properties of the final thermopressed specimens. However, the addition of CNF to the pulps (from 2 to 6%) had a further decrease in the dewatering efficiency in the wet-moulding process, and this effect was more pronounced in the Kraft pulp specimens. The mechanical performance of the thermoformed specimens was in the same range as the plastic materials that are conventionally used in food packaging, i.e., modulus 0.6–1.2 GPa, strength 49 MPa and elongation 6–9%. Finally, this study demonstrates the potential of wood pulps to form three-dimensional thermoformed products.

Funder

The Research Council of Norway

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3