Eu3+ Complex-Based Superhydrophobic Fluorescence Sensor for Cr(VI) Detection in Water

Author:

Ding Wei1,Vallabhuneni Sravanthi2,Liu Jin1,Wang Xinzhi1ORCID,Zhao Yue1,Wang Yao1,Tang Qinglin1,Wang Yanxin1,Zhang Xiaolin1,Kota Arun Kumar2ORCID,Tang Jianguo1ORCID

Affiliation:

1. Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China

2. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA

Abstract

Cr(VI) compounds are bioaccumulative and highly toxic pollutants, and there is a need for simple and fast detection methods to monitor their trace levels. In this work, we developed a Eu3+ complex-based fluorescence sensor to easily detect Cr(VI) in water droplets. Our sensor consists of a nanofibrous membrane electrospun with a blend of polyvinylidene fluoride (PVDF), silica particles, and Eu3+ complex. Upon modifying the membrane surface with fluoroalkyl chemistry, the sensor displayed superhydrophobicity. When a water droplet with Cr(VI) was placed on such a superhydrophobic fluorescence sensor, the overlapping absorption of Cr(VI) and Eu3+ complex facilitated the inner filter effect, allowing the selective detection of Cr(VI) down to 0.44 µM (i.e., 45.76 µg L−1). We proposed and designed of new inexpensive and fast sensor for the detection of Cr(VI).

Funder

State Key Projects of International Cooperation Research

National Natural Science Foundation of China

National High-End Foreign Expert of China, the Double Hundred Foreign Expert Project of Shandong Province

Program for Introducing Talents of Discipline to Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3