Improving the Luminescence Performance of Monolayer MoS2 by Doping Multiple Metal Elements with CVT Method

Author:

Zhao Bojin1,Huo Zongju1,Li Lujie1,Liu Hongjun1,Hu Zhanggui1,Wu Yicheng1,Qiu Hailong1ORCID

Affiliation:

1. Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) draw much attention as critical semiconductor materials for 2D, optoelectronic, and spin electronic devices. Although controlled doping of 2D semiconductors can also be used to tune their bandgap and type of carrier and further change their electronic, optical, and catalytic properties, this remains an ongoing challenge. Here, we successfully doped a series of metal elements (including Hf, Zr, Gd, and Dy) into the monolayer MoS2 through a single-step chemical vapor transport (CVT), and the atomic embedded structure is confirmed by scanning transmission electron microscope (STEM) with a probe corrector measurement. In addition, the host crystal is well preserved, and no random atomic aggregation is observed. More importantly, adjusting the band structure of MoS2 enhanced the fluorescence and the carrier effect. This work provides a growth method for doping non-like elements into 2D MoS2 and potentially many other 2D materials to modify their properties.

Funder

NSFC

Natural Science Foundation of Tianjin

Key Research and Development Program of the Ministry of Science and Technology

National Defense Science and Technology 173 Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3