Author:
Livieris Ioannis,Kotsilieris Theodore,Dimopoulos Ioannis,Pintelas Panagiotis
Abstract
Length of stay of hospitalized patients is generally considered to be a significant and critical factor for healthcare policy planning which consequently affects the hospital management plan and resources. Its reliable prediction in the preadmission stage could further assist in identifying abnormality or potential medical risks to trigger additional attention for individual cases. Recently, data mining and machine learning constitute significant tools in the healthcare domain. In this work, we introduce a new decision support software for the accurate prediction of hospitalized patients’ length of stay which incorporates a novel two-level classification algorithm. Our numerical experiments indicate that the proposed algorithm exhibits better classification performance than any examined single learning algorithm. The proposed software was developed to provide assistance to the hospital management and strengthen the service system by offering customized assistance according to patients’ predicted hospitalization time.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献