Gravity-Matching Algorithm Based on K-Nearest Neighbor

Author:

Gao ShuaipengORCID,Cai Tijing,Fang KeORCID

Abstract

The gravity-aided inertial navigation system is a technique using geophysical information, which has broad application prospects, and the gravity-map-matching algorithm is one of its key technologies. A novel gravity-matching algorithm based on the K-Nearest neighbor is proposed in this paper to enhance the anti-noise capability of the gravity-matching algorithm, improve the accuracy of gravity-aided navigation, and reduce the application threshold of the matching algorithm. This algorithm selects K sample labels by the Euclidean distance between sample datum and measurement, and then creatively determines the weight of each label from its spatial position using the weighted average of labels and the constraint conditions of sailing speed to obtain the continuous navigation results by gravity matching. The simulation experiments of post processing are designed to demonstrate the efficiency. The experimental results show that the algorithm reduces the INS positioning error effectively, and the position error in both longitude and latitude directions is less than 800 m. The computing time can meet the requirements of real-time navigation, and the average running time of the KNN algorithm at each matching point is 5.87s. This algorithm shows better stability and anti-noise capability in the continuously matching process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

1. Modern inertial navigation technology and its application

2. An integrated approach to the design and analysis of navigation, guidance and control systems for AUVs

3. Review of Underwater Gravity Matching Positioning Algorithm;Wang;Navig. Control.,2020

4. Recent Advances and Future Trends in Foreign Underwater Navigation Techniques;Xu;Ship Sci. Technol.,2013

5. Real-Time Maximum Correlation Matching Algorithm Based on Approximated Local Gravity Map;Huang;J. Chin. Inert. Technol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3