Redefining and Calculating the Pass-through Rate Coefficient of Nonpoint Source Pollutants at Different Spatial Scales

Author:

Wang Meng,Geng Runzhe

Abstract

Accurately converting nonpoint source pollution loads from the watershed scale to administrative scale is challenging. A promising solution is calculating the pass-through rate coefficient of nonpoint source pollutants (PTRE–NPS) at the watershed scale and discretizing the watershed units on grids with the same area but with different PTRE–NPS information. However, the pollution load of agricultural nonpoint sources has received far more attention than the PTRE–NPS. Moreover, as most of the existing PTRE–NPS results are obtained by distributed, semi-distributed models and the field monitoring of small watersheds, they are not easily extended to the national-scale management of nonpoint source pollution. The present study proposes a new conception of PTRE-NPS and tests it on different spatial scales by a coupled model, which captures the entry of agricultural nonpoint source pollutants into rivers and lakes. The framework includes five major modules: a pollutant driving and loss module, a surface runoff module, a soil erosion module, a subsurface runoff module, and a retention module. The model was applied in simulations of agricultural nonpoint source pollution in the Hongfenghu reservoir watershed with a karst hydro-geomorphology, which exists in the mountainous region of southwest China. On the watershed scale, the PTRE–NPS of total nitrogen (TN) and total phosphorous (TP) ranged from 0 to 2.62 (average = 0.18) and from 0 to 3.44 (average = 0.19), respectively. On the administrative scale, the PTRE–NPS of TN and TP were highest in Baiyun Town. The TN and TP loads of the agricultural nonpoint source pollution in the rivers and lakes of the Hongfenghu reservoir watershed were 1707.78 and 209.03 t, respectively, with relative errors of −45.36% and 13.07%, respectively. Most importantly, the developed framework can scientifically represent the generation–migration–transmission process of agricultural nonpoint source pollutions in each grid at both the watershed and administrative scales.

Funder

National Natural Science Foundation of China

The project of the Second National Census of Pollution Sources of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. Targeting for nonpoint source pollution reduction: A synthesis of lessons learned, remaining challenges, and emerging opportunities

2. Bulletin of the Second National Census of Pollution Sources of China;Ministry of Ecology and Environment of the People’s Republic of China,2020

3. Nonpoint source pollution and soil erosion Control—Application of the Universal Soil erosion Equation in the United States;Zhu;Trends Environ. Sci.,1984

4. Application of hydrological models to non-point source pollution studies;Li;Shaanxi Water,1987

5. Non-point source pollution control and management;He;Environ. Sci.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3