Percolation in Carbon Nanotube-Reinforced Polymers for Strain-Sensing Applications: Computational Investigation on Carbon Nanotube Distribution, Curvature, and Aggregation

Author:

Pontefisso Alessandro1ORCID,Zappalorto Michele1

Affiliation:

1. Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy

Abstract

The present article investigates the possibility of simulating the electrical conductivity of carbon nanotube-reinforced polymer composites by numerical methods. Periodic representative volume elements are generated by randomly distributing perfectly conductive reinforcements in an insulating matrix and are used to assemble an electrical network representative of the nanocomposite, where the nanotube–nanotube contacts are considered equivalent resistors modeled by means of Simmons’ equation. A comparison of the results with experimental data from the literature supports the conclusion that a random distribution of reinforcements is not suitable for simulating this class of materials since percolation thresholds and conductivity trends are different, with experimental percolation taking place before the expectations. Including nanotube curvature does not solve the issue, since it hinders percolation even further. In agreement with experimental observations, the investigation suggests that a suitable approach requires the inclusion of aggregation during the volume element generation to reduce the volume fraction required to reach percolation. Some solutions available in the literature to generate properly representative volume elements are thus listed. Concerning strain sensing, the results suggest that representative volume elements generated with random distributions overestimate the strain sensitivity of the actual composites.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3