Effect of Aging Treatment on the Microstructure and Properties of 2.2 GPa Tungsten-Containing Maraging Steel

Author:

Han Shun1,Li Xinyang1,Liu Yu1,Geng Ruming1,Lei Simin1,Li Yong1,Wang Chunxu1

Affiliation:

1. Research Institute of Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China

Abstract

Maraging steel is a prominent category of ultrahigh-strength steel (UHSS) characterized by excellent comprehensive properties, and it finds wide applications in manufacturing load-bearing structural components. In this study, a novel tungsten-containing maraging steel, C-250W, was designed. The effects of aging treatments on the mechanical properties, microstructure, precipitations, and reverted austenite of C-250W steel were investigated. The results revealed that the optimal combination of strength and toughness could be achieved through an aging treatment of C-250W steel carried out for 5 h at 480 °C after solution treatment at 1000 °C for 1 h. As the aging temperature increased, the proportion of dimples in the impact fracture gradually decreased while that of quasi-cleavage increased, leading to a reduction in Charpy impact energy. The boundary of martensitic lath decomposed gradually as the aging temperature increased, and it disappeared entirely at temperatures higher than 550 °C. Moreover, the aging process resulted in the formation of phases, including spherical Fe2M (M represents Mo, W) and thin strip-shaped Ni3N (N represents Mo, Ti) precipitates. These precipitates coarsened from 5 nm to 50–200 nm with increasing aging temperature. Additionally, the content of reverted austenite increased with the aging temperature. Within the temperature range of 400 °C to 500 °C for aging treatment, the content of film-shaped reverted austenite was approximately 3%, primarily distributed at the boundary of martensite lath. When the aging temperature exceeded 550 °C, the content of reverted austenite reached 20.2%, and its morphology changed from film-shaped to block-shaped, resulting in a decline in strength and toughness.

Publisher

MDPI AG

Subject

General Materials Science

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3