An Armour Structure to Suppress the Brittle Failure of Ceramic Coatings

Author:

Liu Wei1,Bao Fubing12,Zhang Yinning2,Wang Jinqing2ORCID,Liang Xiaoyu2

Affiliation:

1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

The brittle failure of ceramic coatings limits their application in many fields. To address this issue, a novel armoured ceramic coating was developed to suppress brittle failure. First, an interconnected frame microstructure was micromachined onto the surface of a mild steel substrate using a nanosecond laser. Subsequently, a polymer-derived ceramic slurry was sprayed and sintered to obtain an armoured ceramic coating. The laser-micromachined burr-like microstructure of the substrate facilitated adhesion between the coating and the substrate. The results of the mechanical properties test showed that the armoured coating could withstand more than 20 cycles of water-cooled thermal shock at 600 °C, and the peeling area of the armoured coating was approximately three times less than that of the unarmoured coating under a normal load of 1471 N. The laboratory and field corrosion test results indicated that at high temperatures, the corrosion resistance of the armoured coating was comparable with that of the unarmoured coating and was approximately 10 times higher than that of the uncoated sample. The proposed method will aid in suppressing the brittle failure of ceramic coatings and broaden their scope of application in different fields.

Funder

National Natural Science Foundation of China

Zhejiang Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3